Accura 3700教育资料

1. Accura 3700

2. Accura 3700 产品和构成品

3. Accura 3700 基本设定

4. Accura 3700 模块设定

5. Accura 3700 通信设定

1. Accura 3700

- ▶ 监测仪后面可以添加测量模块。
- ▶ 精密测量电压,电流读数可精确到0.2%。
- ▶ 感知监测Dip瞬降, Swell骤升事件。
- ▶ 感知数字输入,模拟输入事件。
- ▶ 以太网2个接口, RS485通信1个接口。
- ▶ 测量谐波可多达63个谐波。
- ▶ 常用频率50/60Hz。
- ▶ 使用在受配电盘,高,低压电盘上。
- ▶ 电能质量仪表。
- ▶ 预防异常事件或异常事件发生时,掌握原因后安排事后对策。
- 受配电盘:把从发电厂接收的电能,分配给各支路的电力系统。
- 谐波:谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。
- 常用频率:电力公司供给交流电的频率。
- 品质:能让被赋予的要求得到满足的产品或服务,其具有全部的特征和性格特点。

2. Accura 3700产品及构成品

◆ 显示画面

274.	METER*	EVENT*	COMM~	NETWORK*	RESET*	DISPLAY	MODULE*	INFO~
杀列	测量。	事件~	RS-485 通信~	以太阿適信。	重设~	显示"	模块"	信息。
	結視方法。 この11年7日 日本 日本 日本 日本 日本 日本 日本 日本 日本 日	瞬時事件- d :P <u>Eune</u> <u>pFF</u>	通信速度 - bRod 9500	IP地址。 IP 0 400 100 7 0295	需求重役~ dnnd - ESEと	电量类型- E_とゲ <u>nEと</u>	模块ID- 「 ¹ 7ad 」 に	产品号码~ Sn00 0000 0000
	PT电压定额- 3相功率总和法- マー PL Pr 00 0380 Sc 380 「つd 1	藤升事件- Sul <u>Eune</u> のFF	校验位- Prと5 EuEn	子岡厚厳码~ Sbnt 2552 5525 5000	重设最大/最小值	LCD充灯指并时间。 L 194 E 195 60	模換設定信息~ 信存~ InFa SBut	硬件版 / HuE/ 102
1	CT培達定額。 最小培達。 CE Pr00 0500 20 20	孵発开始电压- ▼	停止包~ 5toP 1	同关- 93EE 0 400 100 7 000 7	电量重役~ Enr9 rE5Eと	事件报警灯、 進持时间、 Eune bi 9と 夏	-	抜件版 - SuEr - 3 132 - F 1 15
	功率因数 - 基准电压 - V. Ur EF Pr DD 0390. PF S 19n 9n	· μ 异结束电压 - 900 - 20.48.	単址・ Rddr G	MAC地址 - 0237 0000 0012	全体重设。 RLL ・E5E4	LCD限明先度。 brtn H 99 P780 L 00	,	*
1	元気前功率因数- 基准电流- I Pr.CF P.CD 0500. ロー ロー ロー ロー ロー ロー ロー ロー ロー ロー	银升开始电压- V- SuLS 1.00 24.13.	RS-485通信間~ パーロック アーロック 23700	NTP -		後示。 dENa oFF	~	
	元放功率。 音量子区间。 d ^{mn} d <u>Sb b</u> <u>15</u> <u>an</u>	報升結束电压- V SuLE 1080、 2359.	-	0 LP 0 400 100 1 000 1	~			~
	営業子区局十数 - d ^{(∩})d noSb i	培断器故障。 FuSE F3ル oFF	断电。 bL み Dut oFF	E cP E INE Que 500				

长按SETUP键,可以看到设置相关的菜单.
已安装模块的情况,从模块画面向右移动的话可以看到已安装模块的相关信息.

◆ 结线方法设定: 根据结线方法的不同,测量的数值也会不同,所以应该准确的确认后再设定。

连接【Conn→连接】

- 1. 按ESC键回到初始画面。
- 2. 长按SETUP键进入设定画面。
- 第一个画面显示的是设定画面,看图纸 确认结线方式后长按 ENTER键,用方 向键选择后再长按 ENTER键设定。

3. Accura 3700基本设定 ◆ CT定额设定: 如果不能正确输入CT1, 2次数值的话, 电流测量值会很高或

者很低,所以要定额设定。

设定范围 - Pr【初级】

- Sc【次级】

ESC SETUP EVENT ENTER

CT 额定值【Ct→CT】

FROM : X2-1 110kV S/S 32-BANK HVCB-2F1CK

「⊢ CT1次数值

CT2次数(

Pr00

nsnn

4. 长按ENTER键用方向键设定CT 1次, 2次 数值后,再长按一次ENTER键,设定结 束。

◆ 基准电压设定:为了瞬降DIP,骤升SWELL事件的设定作为基准, 设定基准电压。

电压参考【UrEF→基准电压】

设定范围		
Pr【初级】	CT 初级线电压	
【d】 【d】 【d】 【d】 【d】 【d】 【d】 ¹	000001~9999999	
【默认值 380】		

- 1. 长按ESC键进入初始画面。
- 2. 长按SETUP键进入设定画面。
- 直到出现和图一样的画面为止按
 EVENT키键(短按)。
- 4. 长按ENTER键,用方向键设定PT 1次电 压值后,再长按一次 ENTER键,设定 结束。

¹ *d*→十进制。

用于和转换为 PT 初级额定值的测量值对比的参考电压应为相连接输入值。参考电压用作瞬降 【Sag】和骤升的参考,同样还用作前条形图显示的参考。

◆ 基准电流设定:为了总需求失真TDD(Total demand distortion) 设定时作为基准,设定基准电流。

电流参考【IrEF→电流参考】

参考电流用作 TDD 配置的基准值,同样还用作前条形显示的基准。

- 1. 长按ESC键进入初始画面。
- 2. 长按SETUP键进入设定画面。
- 3. 知道出现和图一样的画面为止,按 EVENT键(短按)。
- 4. 长按ENTER键,用方向键设定 CT 1次
 电流值,并且再长按一次 ENTER键,
 设定结束。

◆ 演示模式设定:真实的电压,电流即使不被许可,为了临时测试时使 用的提供虚拟的手段.

演示开【三相平衡】

演示开【三相不平衡】

演示关

演示【dE ∩→演示】

1. 长按ESC键进入初始画面。

- 2. 长按SETUP键进入设定画面。
- 3. 短按ENTER键, 直到出现电量类型画面 为止。
- 4. 短按EVENT键, 直到出现和图一样的画 面为止。
- 5. 长按ENTER键,使用方向键设定希望的 设定数值,再长按一次 ENTER键,设 定结束。

Balance 设定的时候, 去初始画面的话, 能看到和图一样的画面。

◆ 故障测试设定:fault是缺陷,故障的意思。出现问题时为了确认在上 位里能否正常的识别而设定。

Meas: 系统故障设定 Mod.1: 第一模块故障设定 Mod.2: 第二模块故障设定 Eth.1: 第一接口故障设定 Eth.2: 第二接口故障设定 H.bEat: Heart Beat通信状态故障设定 Ntp.F: ntp 时间同步故障设定 LooP: Loop 以太网连接状态故障设定

- 1. 长按ESC键进入初始画面.
- 2. 长按SETUP键进入设定画面.
- 3. 短按ENTER键,直到出现和图一样的画面为止.
- 4. 长按ENTER键,用方向键设定希望的数 值,再长按一次ENTER键,设定结束.

◆ 按模块设定ID: 如果ID重复的话就不能显示模块的详细信息,所以 设定不可以重复。

每个模块 ID 设置	
【d1】、【d2】、【d3】 ¹	【d1】第一个模块的 ID
	【d2】第二个模块的 ID
	【d3】第三个模块的 ID
设定范围	
1-9	
【默认值 0】	仅显示添加的模块, 配置每个模块

¹d→十进制

- 1. 长按ESC键回到初始画面。
- 2. 长按SETUP键进入设定画面。
- 3. 短按EVTER键, 直到出现和图一样的画面为止。
- 4. 长按ENTER键,光标闪动进入可以设定 的状态,根据安装模块的数量利用方向 键设定ID后,再长按ENTER键,设定结 束。

◆ DI模块设定: DI模块为了显示接点状态而设定。

DI 信道极性【dI_1→ DI 信道 1.	Polar→极性】	
	DI 信道配置	
Mener 1	dI_{dJ}	【d】信道 1-12
61		DI 模块具有 12 个 DI 信道
	设定范围	
	norM【正常,默认值】	如果外部接触点为0N,则显示0N
	rEu【相反】	如果外部接触点为0FF,则显示
		ON₀
		¹ d→十进制。

◆A接点:平常时断开,通电时连接
◆B接点:平常时连接,通电时断开

 DI模块除了ID设定以外,一般不做其他 的设定,但是如果想变换显示的接点时, 参照图片设定就行。

◆ DI模块设定后的确认

- 1. 按ESC键回到初始画面。
- 2. 短按ENTER键,直到出现和图一样的画

面为止。

3. 按每个信道显示接点。

DI 显示状态	DI 接触点状态		
	输入极性:正常	输入极性: 倒置	
低()	打开(Off)	关闭 (On)	
高()	关闭 (On)	打开 (Off)	

- ◆ Normal 正常: A接点
- ◆ Reverse 相反: B接点

◆ AI模块设定1

AI模块接收 0~20mA 或 4~20mA 的模拟电流信号, 使它变换成所设定的范围,所以必须要正确设定模块。

AI 信道模拟输入类型【AI-1→AI 信道 1, tyPE→Type】

¹d→十进制

- 1. 长按ESC键回到初始画面。
- 2. 长按SETUP键进入设定画面。
- 3. 短按EVTER键, 直到出现和图一样的画面为止。
- 4. 长按ENTER键,光标闪动进入可以设定的状态,设定为4-20mA(也可以设定0-20mA 但是根据顾客的要求设定为4-20mA)

◆ AI模块设定2

1. 为了看与20mA相符的最大数值而设定, 所以设定

的数值不对的话,也不能知道正确的实际数值。

AI 信道模拟输入 20mA 转换值【AI-I→AI 信道 1, HI→高】

¹d→小数点。

- 1. 长按ESC键回到初始画面。
- 2. 长按SETUP键进入设定画面。
- 3. 短按ENTER键, 直到出现模拟输出类型 画面为止。
- 4. 模拟输出类型画面里短按EVENT 键, 直 到出现和图一样的画面为止。
- 5. 长按ENTER键,光标闪动进入能设定的 状态,并使用方向键设定符合20mA的 最大值,再长按ENTER键设定结束。

- ◆ AI模块设定3
 - 1. 为了看与4mA相符的最小值而设定, 所以设定的数值不对
 - 的话,也不能知道正确的数值。
 - 2. AI模块上有6个信道, 应该设定每个信道。

AI 信道模拟输入 0/4mA 转换值【AI-I→AI 信道】【1oW-低】

1. 长按ESC键回到初始画面。

- 2. 长按SETUP键进入设定画面。
- 3. 短按ENTER键, 直到出现模拟输出类型 画面为止。
- 4. 模拟输出类型画面里短按EVENT 键, 直 到出现和图一样的画面为止。
- 5. 长按ENTER键,光标闪动进入能设定的 状态,并使用方向键设定与20mA相符 的最大值,再长按ENTER键结束设定。

¹∉小数点。

◆ AI模块设定后确认

- 1. 按ESC键回到初始画面。
- 2. 短按ENTER键, 直到出现和图一样的画面为止。

◆ AI模块共有6个信道,并且每个画面显示一封信道。

◆ AO模块设定1

1. AO模块的作用是把从监测仪测量的数值变换成 4~20mA模

拟输出电流后向上位(CCR)发送。

连接输出参数【Ao_ I →AO 信道 1, Para→参数】

-

	AO 信道配置	
	Ao_ 【d】 1	【d】信道1 ~ 6
Ro		A0 模块有6个A0信道
Ro_ I	设定范围	
Para	无【无,默认值】	无连接输出元件
U_8	U_a[Va]	A相电压
	U_Ь[VЬ]	B相电压
	U c[Vc]	C相电压
		平均相电压
	U_ab[Vab]	AB相线电压
	U bc[Vbc]	BC相线电压
	U ca[Vca]	CA相线电压
	U LL[V,,]	平均线电压
	A a[la]	A相电流
	А ЫЛЫ	B相电流
		C相电流
	A[1]	平均电流
	f W[kW]	有效电流【kW】
	PF	功率因子(PF)
	/ Uar[kVAR]	无效功率【kVAR】
	/ UalkVAl	表面功率【kW】
	FrEd[Erod]	频率【Hz】
	inequired]	

- 1. 长按ESC键回到初始画面。
- 2. 长按SETUP键进入设定画面。
- 3. 短按ENTER键,直到出现和图一样的画面为止。
- 4.长按ENTER键,光标闪动进入可以设定 的状态,并使用方向键设定希望的设定 范围后,再长按ENTER键设定结束。

- ◆ AO模块设定2
- 1. AO模块 把测量的数据变换成0~20mA或4~20mA的形式输
 - 出,所以必须要正确设定"设定范围"。

		•	/	
ESC	SETUP	EVENT	ENTER	
\square	\square	\square	-	

AO 信道模拟输出类型【Ao_I→AO 信道 1, tyPE→类型】

	设定范围	
Max 2	0–20	输出范围 0 ~ 20mA类型
Ro	4-20【默认值】	输出范围 4 ~ 20mA类型
Ro_ I		
ESPE		
4-20		
BACH AN AN AN AVAIL OF PAR AND AN AN		

- 1. 长按ESC键回到初始画面。
- 2. 长按SETUP键进入设定画面。
- 3. 短按ENTER键,直到出现连接输出参数 画面为止。
- 4. 短按EVENT键, 直到出现和图一样的画面为止。
- 5. 长按ENTER键,光标闪动进入可以设定的状态,并使用方向键设定4-20mA后,再长按ENTER键设定结束。(设定为0-20mA也可以,但是根据顾客的要求设定为4-20mA。)

◆ AO模块设定3

为了准确掌握想要测量的数值,所以必须要正确设定"最大值"。

模拟输出最大值【Ao_1→A0 信道 1, H1→高】

⁺d→十进制。

- 1. 长按ESC键回到初始画面。
- 2. 长按SETUP键进入设定画面。
- 3. 短按 ENTER键, 直到出现连接输出参数画面为止。
- 4. 短按EVENT键, 直到出现和图一样的画面为止。
- 5. 长按ENTER键,光标闪动进入可以设定的状态,并使用方向键设定与20mA相符的最大值后,再长按ENTER键设定结束。

♦ AO模块设定4

为了正确掌握想要测量的数值,所以必须要正确设定"最大值"。

$\left(\right)$	$\left \right $		$\left \right\rangle$
ESC	SETUP	EVENT	ENTER

模拟输出最小值【Ao_I→AO 信道 1, Lo→低】

¹d→十进制。

- 1. 长按ESC键回到初始画面。
- 2. 长按SETUP键进入设定画面。
- 3. 短按ENTER键, 直到出现连接输出参数 画面为止。
- 4. 短按EVENT键, 直到出现和图一样的画面为止。
- 5.长按ENTER键,光标闪动进入可以设定的状态,并使用方向键设定与0mA或4mA相符的最小值后,再长按ENTER键设定结束。

◆ AO模块设定后确认

- 1. 按ESC键回到初始画面。
- 2. 短按ENTER键, 直到出现和图一样的画面为止。

◆ AO模块共有6个信道,每个画面显示一个信道。

◆ DC模块设定1

1. 因为监测仪只能测量AC电压、电流,所以为了测量DC电压

和电流而使用。

整流器输出电压信号【U out→输出 DC 电压, Sign→信号】

整流器输出电流分流额定值【I out→额定输出 DC 电流】

¹d→十进制。

- 1. 长按ESC键回到初始画面。
- 2. 长按SETUP键进入设定画面。
- 3. 短按ENTER键, 直到出现整流器输出电 压画面为止。
- 4. 短按EVENT键, 直到出现整流器输出电 流画面为止。
- 5. 长按ENTER键,光标闪动进入可以设定 的状态。看图纸并使用方向键设定2次 电压和1次电流后,再长按ENTER键设 定结束。

◆ DC模块设定2

1. 监测仪只能测量AC电压、电流,所以为了测量DC电压和 电流而使用。

电池电流分流器额定值[I bat → 电池电流额定值]

- 1. 长按ESC键回到初始画面。
- 2. 长按SETUP键进入设定画面。
- 3. 短按ENTER键, 直到出现整流器输出电 压画面为止。
- 4. 短按EVENT键, 直到出现电池电流 Shunt定额画面为止。
- 5. 长按ENTER键,光标闪动进入可以设定 的状态。看图并使用方向键设定2次电 压和1次电流,再长按ENTER键设定结 束。

◆ DC模块设定后确认

- 1. 按ESC键进入初始画面。
- 2. 短按ENTER键, 直到出现和图一样的画面为止。

◆ AO模块共有6个信道,每个画面显示1个信道。

1. 为了和上位准确通信,每个监测仪都必须正确设定 IP。

$\operatorname{IP}\left(\operatorname{IP}\rightarrow\operatorname{IP}\right)$

设定范围
000. 000. 000. 000 [~] 255. 255. 255. 255
【默认值 010. 010. 010. 100】

1. 长按ESC键回到初始画面。

- 2. 长按SETUP键进入设定画面。
- 3. 短按ENTER键, 直到出现和图一样的画面为止。
- 4. 长按ENTER键,光标闪动进入可以设定的状态,并使用方向键设定被赋予的IP,再长按ENTER 引键设定结束。

◆ 子网屏蔽码设定

1. 为了和上位准确的通信, 所以必须正确设定子网屏蔽码(小组)。

子网掩码【sbnt→子网掩码】

	设定范围
Sbn.E 255.2 55.25 5.000	以足视网 255. 255. 000. 000 [~] 255. 255. 255. 252 【默认值 255. 255. 255. 000】

- 1. 长按ESC键回到初始画面。
- 2. 长按SETUP键进入设定画面。
- 3. 短按ENTER键, 直到出现IP设定画面为止。
- 4. 短按EVENT键, 直到出现和图一样的画面为止。
- 5. 长按ENTER键,光标闪动进入可以设定 的状态,并使用方向键设定被赋予的子 网屏蔽码数值后,再长按ENTER键设定 结束。

◆ 网关设定

1. 如果设定IP和子网的话, 网关自动调配, 但是也可能使用的不一样,

所以要准确的确认被赋予的网关。

网关【gatE→网关】

设定范围 000.000.000 ~ 255.255.255.255 【默认值 010.010.010.001】

- 1. 长按ESC键回到初始画面。
- 2. 长按SETUP键进入设定画面。
- 3. 短按ENTER键, 直到出现IP设定画面为止。
- 4. 短按EVENT键, 直到出现和图一样的画面为止。
- 5. 网关自动调配,可是万一使用不同的情况(长按ENTER键,光标闪动进入可以设定的状态,并使用方向键设定被赋予的网关数值,再长按ENTER键设定结束)。

◆ NTP设定

1. 为了时间同步而设定,为了让监测仪和上位之间对准时间而设定。

2. 为了掌握事件发生时的准确时间而设定。

NTP 服务器【ntPS→NTP 服务器】

配置 Accura 3700 时间同步时,输入服务器 NTP 【网络时间协议】 IP

I/CIK方面 NIF 【网络时间防风】 IF。			
设定范围			
<i>000. 000. 000. 000</i> ~			
255. 255. 255. 255			
【默认值 010. 010. 010. 001】			

- 1. 长按ESC键进入初始画面。
- 2. 长按SETUP键进入设定画面。
- 3. 短按ENTER键, 直到出现IP设定画面为止。
- 4. 短按EVENT键, 直到出现和图一样的画面为止。
- 5. 长按ENTER键, 光标闪动进入可以设定 状态, 并使用方向键设定被赋予的 NTP服务器IP后, 再长按ENTER键设定 结束。

- ◆ RSTP快速生成树协议设定
- 1. 为环形构造连接而设定。
- 2. 连接的接口断线的时候自动找到替代线路, 为了防止断网而做环形

构造连接。

		설정범위	
		On	RSTP 事件功能开启
	r SEP	<i>oFF(</i> 默认)	RSTP 事件功能关闭

- 1. 长按ESC键进入初始画面。
- 2. 长按SETUP键进入设定画面。
- 3. 短按ENTER键, 直到出现IP设定画面为止。
- 4. 短按EVENT键, 直到出现和图一样的画面为止。
- 5. 长按ENTER键, 光标闪动进入可以设定 的状态,并使用方向键设定为ON,再 长按ENTER键设定结束。